AbstractsAstronomy & Space Science

Dusty ringlets in Saturn’s ring system

by Robert Johann Flassig




Institution: Universität Potsdam
Department:
Year: 0
Record ID: 1104661
Full text PDF: https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/2535


Abstract

Recently, several faint ringlets in the Saturnian ring system were found to maintain a peculiar orientation relative to Sun. The Encke gap ringlets as well as the ringlet in the outer rift of the Cassini division were found to have distinct spatial displacements of several tens of kilometers away from Saturn towards Sun, referred to as heliotropicity (Hedman et al., 2007). This is quite exceptional, since dynamically one would expect eccentric features in the Saturnian rings to precess around Saturn over periods of months. In our study we address this exceptional behavior by investigating the dynamics of circumplanetary dust particles with sizes in the range of 1-100 µm. These small particles are perturbed by non-gravitational forces, in particular, solar radiation pres- sure, Lorentz force, and planetary oblateness, on time-scales of the order of days. The combined influences of these forces cause periodical evolutions of grains’ orbital ec- centricities as well as precession of their pericenters, which can be shown by secular perturbation theory. We show that this interaction results in a stationary eccentric ringlet, oriented with its apocenter towards the Sun, which is consistent with obser- vational findings. By applying this heliotropic dynamics to the central Encke gap ringlet, we can give a limit for the expected smallest grain size in the ringlet of about 8.7 microns, and constrain the minimal lifetime to lie in the order of months. Furthermore, our model matches fairly well the observed ringlet eccentricity in the Encke gap, which supports recent estimates on the size distribution of the ringlet material (Hedman et al., 2007). The ringlet-width however, that results from our modeling based on heliotropic dynamics, slightly overestimates the observed confined ringlet-width by a factor of 3 to 10, depending on the width-measure being used. This is indicative for mechanisms, not included in the heliotropic model, which potentially confine the ringlet to its observed width, including shepherding and scattering by embedded moonlets in the ringlet region. Based on these results, early investigations (Cuzzi et al., 1984, Spahn and Wiebicke, 1989, Spahn and Sponholz, 1989), and recent work that has been published on the F ring (Murray et al., 2008) - to which the Encke gap ringlets are found to share similar morphological structures - we model the maintenance of the central ringlet by embedded moonlets. These moonlets, believed to have sizes of hundreds of meters across, release material into space, which is eroded by micrometeoroid bombardment (Divine, 1993). We further argue that Pan - one of Saturn’s moons, which shares its orbit with the central ringlet of the Encke gap - is a rather weak source of ringlet material that efficiently confines the ringlet sources (moonlets) to move on horseshoe-like orbits. Moreover, we suppose that most of the narrow heliotropic ringlets are fed by a moonlet population, which is held together by the largest member to move on horseshoe-like orbits. Modeling the equilibrium…