AbstractsGeography &GIS

Integrated watershed modeling in Central Brazil

by Michael Strauch




Institution: Technische Universität Dresden
Department: Fakultät Umweltwissenschaften
Degree: PhD
Year: 2014
Record ID: 1099540
Full text PDF: http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-143807


Abstract

Over the last decades, fast growing population along with urban and agricultural sprawl has drastically increased the pressure on water resources of the Federal District (DF), Brazil. Various socio-environmental problems, such as soil erosion, non-point source pollution, reservoir silting, and conflicts among water users evoked the need for more efficient and sustainable ways to use land and water. Due to the complexity of processes relevant at the scale of river basins, a prior analysis of impacts of certain land use and/or land management changes is only feasible by means of modeling. The Soil and Water Assessment Tool (SWAT) has been proven to be useful in this context, across the globe and for different environmental conditions. In this thesis, the SWAT model is utilized to evaluate the impact of Best Management Practices (BMPs) on catchment hydrology and sediment transport. However, model applications in tropical regions, such as the DF, are hampered by severe challenges, (i) the lack of input and control data in an adequate temporal and spatial resolution and (ii) model structural failures in representing processes under tropical conditions. The present (cumulative) thesis addresses these challenges in model simulations for two contrasting watersheds, which both are important sources of the DF’s drinking water supply, i.e. (i) the agriculture-dominated Pipiripau river basin where conflicting demands put immense pressure on the available water resources and (ii) the Santa Maria / Torto river basin, which is to large parts protected as national park and, thus, covered by native vegetation of the Cerrado biome. Perhaps one of the most challenging issues facing watershed modelers in tropical regions is the fact that rain gauge networks can usually not reflect the high spatio-temporal variability of mostly convective precipitation patterns. Therefore, an ensemble of different reasonable input precipitation data-sets was used to examine the uncertainty in parameterization and model output. Acceptable streamflow and sediment load predictions could be achieved for each input data-set. However, the best-fit parameter values varied widely across the ensemble. Due to its enhanced consideration of parameter uncertainty, this ensemble approach provides more robust predictions and hence is reasonable to be used also for scenario simulations. BMP scenarios for the Pipiripau River Basin revealed that erosion control constructions, such as terraces and small retention basins along roads (Barraginhas) are promising measures to reduce sediment loads (up to 40%) while maintaining streamflow. Tests for a multi-diverse crop rotation system, in contrast, showed a high vulnerability of the hydrologic system against any increase in irrigation. Considering the BMP implementation costs, it was possible to estimate cost-abatement curves, which can provide useful information for watershed managers, especially when BMPs are supported by Payments for Environmental Services as it is the case in the study area due to the program Produtor de…