AbstractsBiology & Animal Science

CLCA Proteins in the Airways

by Kristina Dietert




Institution: Freie Universität Berlin
Department: FB Veterinärmedizin
Degree: PhD
Year: 2014
Record ID: 1099469
Full text PDF: http://edocs.fu-berlin.de/diss/receive/FUDISS_thesis_000000097741


Abstract

For more than 15 years, the CLCA (chloride channel regulator, calcium-activated) protein family has been in the focus of several research groups worldwide due to their strong implication in several important animal and human diseases. However, the functions of these molecules in normal tissues and their exact roles in diseases are still incompletely understood. Some CLCA proteins possess a well established role in inflammatory airway diseases with mucus overproduction, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. In the respiratory tract, the human hCLCA1 and its mouse ortholog mCLCA3 are selectively expressed in mucus cells and have directly been linked to the trait of mucus cell metaplasia, a common feature of these diseases. In addition to mCLCA3, the murine mCLCA5 has also been associated with airway mucus cell metaplasia and a redundant or overlapping function of the two murine members was previously proposed. However, the cell types that express mCLCA5 in the airways were unknown. Consequently, in this study the cellular expression pattern of mCLCA5 was determined under healthy and challenged conditions in murine lungs. Since differences in expression patterns between different species have previously been observed for other CLCA proteins, the expression patterns of the mCLCA5 orthologous proteins in humans and pigs, hCLCA2 and pCLCA2, respectively, were also established to allow for a better understanding of animal models for human diseases. In healthy mice, mCLCA5 was found to be uniquely expressed in highly select regions of bronchial epithelial cells and in submucosal glands (SMG), consistent with the canonical anatomical locations of progenitor cell niches. Since club cells were the predominantly mCLCA5 expressing cell type, followed by fewer mucus cells and ciliated cells, it appears unlikely that mCLCA5 has a fully redundant function with mCLCA3 which is expressed in mucus cells only. Under conditions of challenge including instillation of phosphate buffered saline (PBS), Staphylococcus aureus (S. aureus), Streptococcus pneumoniae (S. pneumoniae) or influenza virus, mCLCA5 mRNA and protein expression strongly declined. Protein reappearance was observed only in models retaining intact epithelial cells (PBS, S. aureus). The unique localization of mCLCA5 to murine airway epithelial progenitor cell niches and the observation that mCLCA5 but not mCLCA3 is present in club cells as putative progenitors for mucus cells suggest that mCLCA5 but not mCLCA3 is the prime CLCA protein involved in mucus cell differentiation from precursor cells in mice. Of note, normal human and porcine bronchial epithelial cells did not express their respective mCLCA5 orthologs and SMG of both species had fewer expressing cells, indicative of fundamental differences in mice on the one side versus human and pigs on the other. In addition to their modulation of mucus production, the human hCLCA1 and possibly other CLCA proteins have also been implicated in vitro in the regulation of tissue inflammation…