AbstractsComputer Science

Synthesis of titanium oxide hybrid nanostructures for photocatalysis applications

by Xiaohong Yang




Institution: University of New South Wales
Department: Centre for Computer Simulation & Modelling of Particulate Systems
Year: 2014
Keywords: TiO2 nanoparticle; Photocatalyst
Record ID: 1054409
Full text PDF: http://handle.unsw.edu.au/1959.4/53547


Abstract

Titanium dioxide (TiO2) nanoparticles have exhibited excellent properties and applications in many fields of clean energy, environment protection and biotechnology. This thesis aims to study on TiO2 and its hybrid nanostructures. A brief introduction and literature review on the titanium dioxide synthesis, modifications as well as potential applications which will be presented in Chapters 1 and 2, respectively. Chapter 3 presents an acetone assisted sol-gel synthesis method for preparing monodispersed TiO2 nanoparticles under mild conditions. The experimental parameters, colloidal growth mechanism, and role of acetone in the synthesis process were systematically studied. The photocatalytic activities of the as-prepared particles were compared with commercial titanium dioxide P25 powder under the same conditions. To enhance the functional properties of photocatalysis, the nanocomposites of silver and titanium dioxide with different nanostructures were fabricated in Chapter 4, in which silver@titanium dioxide core-shell nanostructures were found to exhibit excellent performance in photo degradation of organic molecules, nearly double high efficiency to the pure titanium dioxide. The mechanism was studied by density functional simulation (DFT) method. To further explore the multi-functionality of silver-titanium dioxide composites, Chapter 5 assessed the bacterial growth inhibition and bactericidal ability between silver@titanium dioxide core-shell nanostructures and silver doped on the surface of titanium dioxide nanostructures. In chapter 6, a general applied titanium dioxide coating strategy was developed on a variety of core particles (such as Au, Ag, Fe2O3, V2O5, SiO2) with different functionalities. Finally, the summary was presented in Chapter 7.