AbstractsBiology & Animal Science

Low-intensity conditioning for the induction of allogeneic tolerance in aged recipients

by Jessica Kate Morison




Institution: Monash University
Department: Department of Anatomy and Developmental Biology
Year: 2014
Keywords: Bone marrow; Thymus; Hematopoietic stem cell transplantation; Immunosuppression; Immune modulation; Allogeneic
Record ID: 1052174
Full text PDF: http://arrow.monash.edu.au/hdl/1959.1/978017


Abstract

Organ transplantation is the curative technique for end-stage organ failure. However, the success of this technique is opposed by the immunological rejection of the transplanted tissue. Traditionally strategies to combat allogeneic rejection have been based on life-long immunosuppression, which leads to high levels of morbidity stemming from opportunistic infections and malignancy. This can be overcome via the induction of allogeneic tolerance, where bone marrow transplant (BMT) induced allogeneic mixed chimerism can produce a permanent state of donor-specific tolerance, to both skin and solid organ grafts, across major histocompatibility complex (MHC) barriers. The clinical translation of such protocols has been hampered by the toxicities associated with recipient preconditioning, involving lethal or sub-lethal doses of irradiation and/or chemotherapy and a concern for the development of graft versus host disease (GvHD). To reduce conditioning-mediated toxicities, non-myeloablative conditioning regimes have been widely explored. However, despite the success of these protocols in small animal models and nonhuman primates translation to clinical trials has been limited. Age-related thymic involution is often overlooked when trying to induce allogeneic tolerance via BMT. This could pose a significant barrier, considering previous reports demonstrate that to maintain stable allogeneic tolerance in mixed chimeras, there is an absolute requirement for donor antigen-dependent, intrathymic deletion of alloreactive T cells and therefore a functioning thymus. Thymic involution begins at the onset of puberty/sex steroid production and is characterised by a marked disorganisation of the microenvironment, the replacement of lymphoid tissue by adipocytes and a significant decrease in T cell output, leaving the thymus functioning at only 5 % capacity by 10-12 months in the mouse and 40 years in humans. This may be particularly important in a clinical setting, as the majority of transplant recipients are well into adulthood. This thesis aimed to investigate the ability to induce allogeneic tolerance, via a low-intensity conditioning regime in aged mice. This was achieved by (1) investigating the effects of the chemotherapeutic drug busulfan on the bone marrow (BM), spleen and thymus of both young and aged mice, (2) assessing the level of engraftment achieved when busulfan-treated mice receive both low and high-dose HSCT or allogeneic BMT, (3) investigating the role of sex steroid ablation (SSA) in boosting donor-cell engraftment and hematopoietic chimerism in both young and aged mice and finally (4) designing a thymus-sparing, low-intensity conditioning protocol that allowed the induction of allogeneic tolerance via mixed chimerism. Consistent with previous reports, low-dose busulfan was myeloablative, allowing transplanted cells to engraft in the BM, but not immunosuppressive, having only mild effects on the thymus and peripheral lymphoid compartment. Additionally, SSA coupled to chemotherapy increased both thymic cellularity and…